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Overview 

• To generate CD19-specific T cells that can be 
infused on demand when the intended recipient 
needs them, rather than when the T cells are 
available 

• This will be achieved by genetically modifying 
umbilical cord blood-derived T cells to express a 
CD19-specific chimeric antigen receptor (CAR) 
and genetically editing the T cells with 
engineered artificial nuclease to eliminate 
expression of T-cell receptor 



Issues to overcome in investigator-initiated 
clinical trials in academic centers 

• Difficulties in generating CAR+ T-cells from patient 
• Cost and resources to generate CAR+ T-cells for 

infusing into a single patient 
• Many patients cannot wait for the manufacture 

and release of autologous CAR+ T cells 
• Many patients’ immune system is damaged 

precluding generation of autologous CAR+ T cells 
 



Investigator-initiated Gene Transfer Trials under 4 
INDs at MD Anderson Cancer Center 

4 

MDACC/ 
NCI # Agent Dose of CD19RCD28+ 

T cells Enrolled  Products 
made Infused 

2007-
0635/ 

00968760 

CD19-specific T cells derived 
from patient combined with 
autologous HSCT 

5x107/m2 to 5x109/m2  
(IL-2 last 2 cohorts) 

9  
(all NHL) 7 5 

2009-
0525/ 

01497184 

CD19-specific T cells derived 
from donor combined with 
allogeneic HSCT 

106/m2  to  108/m2 

18 
(ALL, n=11; 
NHL, n=6; 
CLL, n=1) 

14 5 

2010-
0835/ 

01362452 

CD19-specific T cells derived 
from umbilical cord blood 
(UCB) donor combined with 
UCB transplantation 

106/m2  to  108/m2 
4 

(ALL, n=3; 
NHL, n=1) 

4 1 

2011-
1169/ 

01653717 

CD19-specific T cells from 
CLL patients after 
chemotherapy (non-HSCT) 

107/m2 to 5x1010/m2 1 1 0 



One donor’s genetically modified T 
cells to be infused in multiple patients 

HLAs 

CAR 

Healthy donor T cells Patient 

CD19 
Intended response 

B-cell leukemia/lymphoma 
HLAs 

TCRαβ 

Normal cells 

HLAs 

Sleeping Beauty 
Transposon/transposase system 

Zinc finger nuclease 



Defining an off-the-shelf T-cell 
product 

• At this point, the desired product will be: 
– CAR+ 

– TCRneg 

• We recognize, and anticipate, that infused allogeneic (HLA-
disparate) T cells may be recognized by endogenous immune 
system leading to eradication of administered product 
– This may be desirable regarding patient safety for this first-in-

human application of CAR+TCRneg T cells 
– Infusion of HLA-mismatched T cells occurs in other clinical 

settings (after HSCT) and results in therapeutic responses 
– We have plans to use ZFNs to generate CAR+TCRneg HLAneg  T 

cells 
 
 
 



SB system to genetically modify T cells 
to target CD19 

• T cells targeting CD19 
feasible gene therapy 
approach 
– Successful infusions of 

genetically modified T cells 
– Tolerable “on target” side-

effects 

• Compelling patient 
population 
– Patients with advanced B-cell 

malignancies high rate of 
relapse 

 
 

2nd generation CD19-specific CAR 
(CD19RCD28) signaling through CD28 
and CD3-ζ 

Shown as a homo-dimer 

scFv

Modified hinge

IgG4Fc

CD28TM

CD28

CD3ζ

CD137 



Approach to manufacturing 

• UCB from banks collected in compliance with current 
good manufacturing practice 

• T cells electroporated with SB system to stably express 
2nd generation CAR targeting CD19 
– CD19RCD137 CAR activates via chimeric CD3-ζ and CD137 

• T cells electroporated with in vitro-transcribed mRNA 
coding for ZFNs specific for TCR β 

• T cells propagated on aAPC and cryopreserved as a 
bank 
– Maintains telomere length to preserve replication 

senescence 



Sleeping Beauty (SB) system 
transposon/transposase 

Transposon DNA plasmid Transposase DNA plasmid 
(or in vitro transcribed mRNA) 

Co-delivery into cells by nucleofection (Lonza) 

 
 
 
 
 
Nucleus 

Transposase 

Transposon 

CAR 

Cytoplasm 

IR/DR 

IR/DR 

hEF1α 

CAR 

CMVIE 

SB11  
Transposase 



ZFNs targeting TCR β 

ZFN DNA plasmids 
for in vitro transcription to generate ZFNs 

In vitro transcription 

Co-delivery into cells by nucleofection (Lonza) 

 
 
 
 
 
Nucleus 

Cytoplasm 

ZFN_R mRNA 
ZFN_L mRNA 

NHEJ 

indel 

TRBC 



In Vitro Transcription of mRNA From Template 
Plasmid 

Linealized by SpeI Overnight digestion 

T7 RNA polymerase 
Cap Analogue 2-3 hours Reaction 

Amplified, in vitro transcribed mRNA 

Release criteria 
 
 Single peak of expected size on BioAnalyzer 
 A260/230 > 1.8 
 A260/280: 1.8-2.1 
 Negative bacteria and fungal cultures 

AAA---AAA ZFN 5’Cap 

64 adenine 

Bioanalyzer 

Single peak 



Off-the-shelf CD19-specific CAR+ T cells from 
UCB 

Day15 after CAR DNA +SB11 DNA Day6 after electro-transfer TRBC.ZFN from mRNA 



Path to the clinic 

• SB system has been used to genetically modify 
T cells to express CD19-specific CAR 

• Patients have received SB-modified CAR+ T 
cells derived from UCB and peripheral blood 

• Approach to manufacturing can be adapted to 
electroporate DNA and mRNA to stably 
express CAR and eliminate TCR 



Zinc Finger Nucleases Targeting TCRβ  
Infusion of Allogeneic 3rd party CD19-specific  

T cells (CD19RCD137+ T cells) in Patients with refractory CD19+ B-lineage malignancies 

Dr. Philip Gregory, Sangamo BioSciences 



What are Zinc Finger Proteins (ZFPs)? 

DNA binding motifs, 
abundance by species 

Tupler R, Perini G, Green MR (2001). Nature 409: 832-833. 

•Natural class of DNA binding proteins / 
transcription factors 

•Exhibit sequence specific binding to a 
broad array of DNA sequences 

•By far the most abundant class of DNA-
binding domains found in human 
transcription factors 

Natural versatility and specificity of 
ZFPs enables application to 

therapeutic target genes 



ZFN Identification and Optimization 

 

18 Zif 268 - DNA complex;  coordinates from  
N.P. Pavletich and C. O. Pabo, Science 252, 809 (1991) 

• Tandem fingers in  
major groove 
 

• Each finger  
   binds 3-4 bp 

 
• N-finger protein 

spans 3N bp 
 

• Target sequence is 
composite of finger 
subsites  

Principles of ZFP-DNA Recognition 



DNA Recognition By Zinc Fingers 

• Mediated by residues 
-1 to 6 of α-helix 
 

• Most critical positions 
are -1, 2, 3 and 6 
 

• One finger typically 
contacts 3 bases 
 

• Correspondence 
between helix 
sequence and triplet 
binding preference  

Finger “Design” Triplet 
-1  2 3    6 Specificity 
 
RSDELTR GCG 
RSDHLTR GGG 
QSSDLTR GCT 
QSGSLTR… GCA… 

5’  

3’  

C  

C  H  

H  

2  

3  

6  

-1  
NH2  

COOH  



ZFPs are linked to functional domains to drive 
targeted therapeutic outcomes 

Functional Domain      Zinc Finger Protein (ZFP) 
 

5’ T A C C C A A C G C G A A T T G C G 3’  

3’ A T G G G T T G C G C T T A A C G C 5’  



ZFP Nucleases (ZFNs) edit genes   

Gene Target 
3’ 
5’ C C A  A C G  C G A  A T T  A T G  G C G  G C G  T G C  G C T  T A A  C G C  A T G  G G T  

G G T  T G C  G C T  T A A  T A C  C G C  C G C  A C G  C G A  A T T  G C G  T A C  C C A  
T A C  
A T G  

3’ 
5’ 



ZFP Nucleases (ZFNs) edit genes  

Modified nucleases (obligate heterodimers) further increases specificity 

3’ 
5’ C C A  A C G  C G A  A T T  A T G  G C G  G C G  T G C  G C T  T A A  C G C  A T G  G G T  

G G T  T G C  G C T  T A A  T A C  C G C  C G C  A C G  C G A  A T T  G C G  T A C  C C A  
T A C  
A T G  

3’ 
5’ 

Gene Target 

Nuclease 

Nuclease 
ZFN1  

ZFN2  



ZFP Nucleases (ZFNs) edit genes  

Miller et al. NBT 2007 
An improved zinc-finger nuclease 
architecture for highly specific 
genome editing 
 
Doyon et al. NMETH 2010 
Enhanced zinc-finger nuclease 
activity with improved obligate 
heterodimeric architectures 

3’ 
5’ C C A  A C G  C G A  A T T  A T G  G C G  G C G  T G C  G C T  T A A  C G C  A T G  G G T  

G G T  T G C  G C T  T A A  T A C  C G C  C G C  A C G  C G A  A T T  G C G  T A C  C C A  
T A C  
A T G  

3’ 
5’ 

Gene Target 

ZFN Cleavage 



ZFP Nucleases (ZFNs) edit genes  

3’ 
5’ C C A  A C G  C G A  A T T  A T G  G C G  G C G  T G C  G C T  T A A  C G C  A T G  G G T  

G G T  T G C  G C T  T A A  T A C  C G C  C G C  A C G  C G A  A T T  G C G  T A C  C C A  
T A C  
A T G  

3’ 
5’ 

Gene Target 

ZFN Cleavage 

Double Strand Break (DSB) 

Gene Target 
3’ 
5’ C C A  A C G  C G A  A T T  A T G  

G G T  T G C  G C T  T A A  T A C  C G C  
T A C  
A T G  

G C G  T G C  G C T  T A A  C G C  A T G  G G T  
A C G  C G A  A T T  G C G  T A C  C C A  

3’ 
5’ 



ZFP Nucleases (ZFNs) edit genes  

NHEJ = Non-homologous End Joining 

ZFN Cleavage 

Double Strand Break (DSB) 

NHEJ 

Gene Knockout 

3’ 
5’ C C A  A C G  C G A  A T T  A T G  G C G  G C G  T G C  G C T  T A A  C G C  A T G  G G T  

G G T  T G C  G C T  T A A  T A C  C G C  C G C  A C G  C G A  A T T  G C G  T A C  C C A  
T A C  
A T G  

3’ 
5’ 

Gene Target 

Gene Target 
3’ 
5’ C C A  A C G  C G A  A T T  A T G  

G G T  T G C  G C T  T A A  T A C  C G C  
T A C  
A T G  

G C G  T G C  G C T  T A A  C G C  A T G  G G T  
A C G  C G A  A T T  G C G  T A C  C C A  

3’ 
5’ 



Lead development overview  

Target  
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region  

ZFP  
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Factors affecting ZFN specificity 

• High DNA binding specificity intrinsic to wt and engineered C2H2 zinc 
finger DNA binding domains 

 
• The absolute requirement for both ZFN monomers to be resident on the 

DNA target to generate an active nuclease with catalytic activity 
 
• The dimerization interface of the FokI domain is weak resulting in 

independent monomer DNA binding 
 
• Use of obligate heterodimer FokI domains which reduce the possibility of 

unwanted cleavage by homodimerization 
 
• Strict spatial / orientation requirements for cleavage 

 
• Fidelity of the natural DNA repair pathways 



Site Selection Assay (SELEX) 

TAG 

Starting library 

i. Bind tagged ZFP 

ii. Capture ZFP-DNA 
complex 

iii. Elute and PCR amplify 

Repeat (i) to (iii) for 3 more cycles 

Clone and sequence 
after 4 cycles 

TAG 

random sequence   

affinity 
tag 
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Assessing the specificity of ZFN action 
Molecular assessment for ZFN specificity: 
• SELEX-based analysis of the top 30 sites genome-wide with the 

highest homology to the experimentally determined consensus 
• Samples chosen for analysis will use an ZFN mRNA dose in excess 

of that used in the clinical manufacturing process 
• Direct DNA sequencing assay (run at ≥10,000 sequence reads per 

site) 
 
 Note that the selection for cells lacking CD3 (a result of on target activity) further serves to increase the 

sensitivity of this off-target analysis  
  

Biological assessments: 
• Demonstrate the lack of autonomous growth in the absence of 

activation signaling and exogenous cytokines (IL-2) 
• Confirm normal karyotype of the final product 



Other assays for ZFN specificity 
Pattanayak, V. et al.. Revealing off-target cleavage specificities of zinc-finger 

nucleases by in vitro selection. Nat. Meth. 8, 765–770 (2011). 
• In vitro system with limited utility due to excess of ZFN used 
• Sites identified have minimal overlap with known cleavage events in vivo 
 

Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease 
specificity. Nat. Biotechnol. 29, 816–823 (2011).: 

• In vivo approach – laborious but useful (more suited to high risk applications)  
• Sites identified have been confirmed by independent methods 
• Data support the consensus binding activity derived by SELEX 
• SELEX-based off target search is a facile and sensitive method for ZFN evaluation 
 
 

in vivo LAM-PCR 

in vitro SELEX 



31 

Preliminary application of ZFNs targeting TCRβ 

No off-target 
cleavage at the 
SELEX derived 
Top 15 sites*  

No off-target 
cleavage at the 
SELEX derived 
Top 15 sites*  

* Assay sensitivity ~1% (on target activity ~48%)  



0704-843 A Phase I Study of Autologous T-Cells Genetically Modified at the CCR5 Gene 
by Zinc Finger Nuclease SB-728 in HIV-Infected Patients.  

Important features:  HIV, adenoviral (Ad5/F35) vector, autologous CD4+ T cells, ZFN KO 
NIH/OBA Receipt Date: 4-13-07. Publicly Reviewed at the June 2007 RAC meeting  
 

NIH RAC experience with ZFN-modified cells 
Specificity assessment exploited SELEX-based Top 15 sites  

0704-848 A Phase I Study of Intratumoral Administration of Cellular Immunotherapy for 
Recurrent/Refractory Malignant Glioma Using Alloclone-002 Modified for 
Glucocorticoid Resistance and Interleukin-2.  

Important features: GBM, adenoviral vector (Ad5/F35), allogeneic CD8+ T cells, ZFN KO 
NIH/OBA Receipt Date: 4-20-07. Publicly Reviewed at the June 2007 RAC meeting 
 

1304-1228  A Phase I Study of Autologous T- Cells Genetically Modified at the CCR5 
Gene by Zinc Finger Nucleases SB-728 in HIV Infected Patients Pre-treated or Not 
with Cyclophosphamide.  

Important features:  HIV, mRNA electroporation, autologous CD4+ T cells, ZFN KO 
NIH/OBA Receipt Date: 04-15-13. Not Selected for RAC Public Review: 05-07-13 



Patient safety 
Molecular assessment for ZFN specificity: 
• SELEX-based analysis of the top 30 sites genome-wide with the highest 

homology to the experimentally determined consensus 
• Samples chosen for analysis will use an ZFN mRNA dose in excess of that used in 

the clinical manufacturing process 
• Direct DNA sequencing assay (run at ≥10,000 sequence reads per site) 
 
  

Biological assessments: 
• Sterility 

– Bacteria, fungi, mycoplasma, endotoxin 
• Identity 

– CAR expression, CD4/CD8 expression 
– Lack of TCR/CD3, CD32 (aAPC) 
– HLA expression 

• Safety 
– Demonstrate the lack of autonomous growth in the absence of activation signaling 

and exogenous cytokines  
– Confirm normal karyotype 
– Lack of SB11 



Genetic engineering is needed to 
meet patient needs 

• T cells genetically modified to express CAR and 
eliminate TCR can be pre-made and infused on 
demand into multiple recipients 

• The final product will be manufactured at 
MDACC 

• Trial undertaken to evaluate safety and 
feasibility of this approach to T-cell therapy in 
a patient population with unmet clinical needs 



Phase I Clinical Trial overview 
Infusion of Allogeneic 3rd party CD19-specific  

T cells (CD19RCD137+ T cells) in Patients with refractory CD19+ B-lineage malignancies 

Dr. Partow Kebriaei, MDACC 



Rationale 

• Patients with advanced CD19 positive 
lymphoid malignancies are refractory to all 
currently available treatment, including high 
dose chemotherapy and hematopoietic stem 
cell transplant. 
 

* Treatment needed urgently at time of relapse. 
 



Probability of Survival after HLA-identical 
Sibling Transplants for Diffuse Large B-Cell 

Lymphoma, 2000-2010 
- By Disease Status - 
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P < 0.0001 
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Probability of Survival after Unrelated Donor 
Transplants for ALL, Age ≥ 20 yrs, 2000-2010 

- By Disease Status - 
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Protocol Objectives 

• Safety, feasibility, and persistence of 3rd party, 
modified T cells 

– Host immune response against CAR 

– Homing ability of genetically modified T 
cells  

– Disease response 



Rationale 
• Enhance immune response to improve survival 

– Target disease using mechanisms 
independent of chemo- and radiotherapy 
with  
non-overlapping toxicities 

– Genetically modified, tumor-specific T cells 
– Readily available product 
 



Study Population 

• Refractory or relapsed CD19+ lymphoid malignancies, 
CLL, ALL, NHL, SLL, FL or MCL, not in complete 
remission  

• Patients must be minimum 3 months from prior 
transplant 

• Age 18-70 years 
• Zubrod performance 0–2, or Lansky PS > 50% 
• No active infection or Grade >2 (CTC vs. 4) toxicity at 

time of  T-cell infusion 



Treatment Plan 

Cyclophosphamide 
60 mg/kg 

Fludarabine 
25 mg/m2 

- 8  - 7  - 6  - 5  - 4  - 3  - 2 - 1   0 

CAR-T 

• T cells infusion no sooner than 48 hours and no later than 1 week 
post completion chemotherapy.  

• T-cell infusion over 2 days: Up to 25% of cells first day, and up to 
75% of the remaining T cell on second day.  

• Patients eligible for recurrent therapy with lymphodepletion 
followed by T cell infusion up to three times if remain with active 
disease, with minimum 6 weeks of observation between 
treatments.   



  Statistical Design 

• Max 42 patients enrolled at 6 dose combinations 
• Study duration 1 year 
• Descriptive: demographics, clinical events/dose level 
• Number of patients with DLT/dose level 

– Dose escalate if < 2/3 of patients have DLT 

Dose Cohort Single T-cell Dose 

Dose Level -1 Not to exceed 106/m2 

Dose Level A >106/m2 but < 107/m2 

Dose Level B >107/m2 but < 5 x 107/m2 

Dose Level C > 5 x 107/m2 but < 108/m2 
Dose Level D >108/m2 but < 5 x 108/m2 
Dose Level E > 5 x 108/m2 but < 109/m2 
Dose Level F >109/m2 but < 5 x 109/m2 



Evaluations, Safety Assessments 
• Pre-Treatment 

– Baseline disease staging 
– Well-described release criteria for T-cell product 
– B- and T-cell subset analyses by flow, quantitative Igs, baseline 

serologic testing for antibody response against CD19-specific 
transgene 

• After T-cell infusion 
– Cultures of T-cell product obtained to monitor for contamination 
– Toxicity grading for adverse events 
– Testing for protein expression and genetic typing, including PCR for 

presence of infused T cells and assessment of clonality  
– Disease staging 

• Long-term follow-up 
– Yearly safety evaluations for 15 years for patients who received  

T-cell infusion 



 Management of Potential Toxicity 

• Microbial contamination of T-cell product 
– Standard GMP procedures will be followed for 

microbial contamination 
• Management of adverse event (AE) attributable to T 

cells  
– Start tocilizumab  
– Then, start corticosteroids  
– If no improvement additional immunosuppression 

added 



• Patient-specific T cells teach proof-of-principle, but 
inherent heterogeneity complicates translational 
appeal 

• We didn’t have to make tumor-specific T cells for 
every patient, but instead could make one source of 
T cells for all patients? 
– Lends itself to centralized manufacturing 
– Undertake Phase IIb multi-center trials powered for 

efficacy 
– Undertake multi-component trials at T-cell MTD  

Preparing for multi-center trials 
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